Issues on Radiation Weighting Factor

Tatsuhiko Sato (Japan Atomic Energy Agency)

Table of Contents

- 1. History of Quality Factor & Radiation Weighting Factor
- 2. Physical Index Suit for Expressing New Quality Factor
- 3. Features of Microdosimetry-Based Quality Factor
- 4. Summary

ICRP Symposium, Tokyo, Japan, Feb. 18, 2016

Who am I ?

Research Topics

- ✓ Development of the PHITS code*
- \checkmark Its application to radiation biology and dosimetry

Contributions to ICRP

✓ Submit dose conversion coefficients calculated by PHITS to DOCAL \rightarrow for ICRP116

Radiation weighting factor: *w*_R

✓ Evaluate dose conversion coefficients used in space dosimetry \rightarrow as a co-author of ICRP123

Radiation quality factor: Q(L) or Q_{NASA}

T.Sato et al. J. Nucl. Sci. Technol. (2013); http://phits.jaea.go.jp

- 1. History of Quality Factor & Radiation Weighting Factor
- 2. Physical Index Suit for Expressing New Quality Factor
- 3. Features of Microdosimetry-Based Quality Factor
- 4. Summary

RBE & Quality Factor

Risk of radiation exposure depends not only on dose and dose rate but also characteristics of radiation causing the dose

Radiation Biology

RBE (Relative Biological Effectiveness): Failla and Henshaw (1931)

= Ratio of absorbed doses of two types of radiation that produce the same specified effect

Depends on dose, dose rate, biological endpoint etc.

Radiological Protection

Quality Factor: ICRU9 (1959)

= "weight" absorbed doses to obtain a common scale for all ionizing radiations

Enables comparison and addition of doses from different radiations

Values of RBE & QF are similar, but their concepts are different

History of Radiation Weighting Factor

Problems of Quality Factor

✓ Q is weighted on dose at a point \rightarrow Factor to be weighted on organ dose ✓ Q is often interpreted to imply a spurious precision \rightarrow More simple relation

ICRP60 (1990)

✓ Radiation weighting factor was introduced to be weighted on organ dose
✓ Q(L) remains only to be weighted on dose at a point, such as H*(10)

Inconsistency between W_R and Q(L)

✓ Numerical coherency between w_R and Q(L) must be established
✓ Dependence of RBE on charged particle energy is considered only in Q(L)

Ignorance of this energy dependence is not acceptable for space dosimetry, Choice of w_R is quite reasonable from the conservative viewpoint

Incident Particle Determines All

✓ w_R is assigned to incident particle type regardless of exposure situation → Problems for non-uniform irradiation

Risk Estimation of Second Cancer for Charged Particle Therapy

Determination of the equivalent dose by strictly following the definition of $w_{\rm R}$

✓ H = D x 2 for proton therapy
✓ H = D x 20 for carbon-ion therapy

Secondary neutron is the dominant particle contributing to organ dose far from the target

patient for carbon-ion therapy
✓ Effective dose should NOT be used in the personal risk estimation
✓ Only ICRP can define a new quantity used for that purpose

It is worthwhile to consider a future concept of quality factor now!

- 1. History of Quality Factor & Radiation Weighting Factor
- 2. Physical Index Suit for Expressing New Quality Factor
- 3. Features of Microdosimetry-Based Quality Factor
- 4. Summary

Candidates for the Physical Index

Name	Symbol	Track structure	Stochastic nature of dose (Single hit)	Stochastic nature of dose (Multiple hit)
Unrestricted LET (ICRP26, 60)	L_{∞}	Х	Х	Х
Restricted LET	L _{OOeV}	0	Х	Х
Effective charge / Speed (NASA-TP2011)	Ζ*/β	0	Х	Х
Lineal energy (ICRU40)	У	0	0	Х
Specific energy	Z	0	0	0

"Microdosimetric Quantity" defined in ICRU36

- 1. History of Quality Factor & Radiation Weighting Factor
- 2. Physical Index Suit for Expressing New Quality Factor
- 3. Features of Microdosimetry-Based Quality Factor
- 4. Summary

Advantages

It can consider...

- 1. Difference in RBE among ion species at the same LET \rightarrow track structure
- 2. Difference in RBE among photons of different energies \rightarrow track structure
- 3. Dose effect due to stochastic variation of absorbed doses in each cell

 \rightarrow stochastic nature for multiple-hit radiation, Q(z)

4. Recent radiobiological findings such as non-targeted effects

 \rightarrow stochastic nature for multiple-hit radiation, Q(z)

Consideration on Track Structure

✓ Lower Z particles have higher RBE than higher Z particles at the same LET
✓ Low-energy X rays have higher RBE than γ-rays
Due to the difference of track structure

Track structure has already been taken into account in $Q(y) \& Q_{NASA}$ as well as treatment planning of carbon-ion therapy

Consideration on Stochastic Nature

- ✓ Related not only to QF but also DDREF
- ✓ Extensively discussed more than 50 years (e.g. ICRP103 annex B.2)

How this variance influences the risk?

Cellular response non-linear to dose

 $R(D) \neq \int R(z)f(z)dz$

- ✓ R(D): Risk estimated from mean dose D
- \checkmark *R*(*z*): Risk of each cell with nucleus dose *z*
- ✓ f(z): PD of cell-nucleus specific energy z

Non-Targeted Effect

- ✓ Non-targeted cells exhibit some radiation effects due to irradiation of surrounding cell
- ✓ Only small fraction of cells are irradiated by dose above a certain threshold

NTE would be observed only in Pu exposure

✓ The variance becomes larger for high-LET and low-dose irradiation

Stochastic nature must be considered in the future QF and DDREF

Disadvantages

- 1. The concept & the numerical relationship of the radiation quality factor would not be simple Not directly results in abandoning the simplicity of the radiological protection system, because QF is mainly used for calculating DCC
- 2. Definitions of *z* and *y* are hard to understand for nonspecialist of microdosimetry As you may feel now...
- 3. Target sizes related to the radiation exposure risk must be determined

Big challenge of radiation research. What is the target? \rightarrow DNA, chromatin, chromosome, cell nucleus, cell, or organ...

Biological experimental data are rarely analyzed as a function of z or y, due to the difficulty of their evaluation
Closer communication between radiobiologist and dosimetrist is the key to overcome this disadvantage

- 1. History of Quality Factor & Radiation Weighting Factor
- 2. Physical Index Suit for Expressing New Quality Factor
- 3. Features of Microdosimetry-Based Quality Factor
- 4. Summary

Summary

Issues on Radiation Weighting Factor

- The simplified concept of radiation weighting factor works well for radiological protection of public
- ✓ It cannot be used in space dosimetry, and should not be used in the personal risk estimation

There are needs to define a new quality factor !

Features of Microdosimetry-Based Quality Factor

- ✓ It can consider both track structure & stochastic nature of doses
- ✓ Concept would not be simple as it is
- Progresses on radiation research are necessary to determine its numerical relationship & appropriate target sizes

Recent radiobiological findings can be included in the radiological protection system \rightarrow this feature can accelerate radiation research

Acknowledgements

Collaborators

PHITS development

K. Niita, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, N. Matsuda, H. Iwase, L. Sihver

Dosimetry Study

A. Endo, K. Manabe

Microdosimetry & Biological Modelling

N. Hamada, R. Watanabe, S. Tsuda, Y. Furusawa

ICRP Task Group 67 (Authors of ICRP123)

G. Dietze, D.T. Bartlett, D.A. Cool, F.A. Cucinotta, X. Jia, I.R. McAulay, M. Pelliccioni, V. Petrov, G. Reitz

Thank you very much for your attention!